Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Rendezvous Planning for Multiple Autonomous Underwater Vehicles using a Markov Decision Process
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Yordanova V, Griffiths H, Hailes S
  • Publisher:
    Institution of Engineering and Technology
  • Publication date:
  • Journal:
    Iet Radar Sonar and Navigation
  • Print ISSN:
  • Keywords:
    planning, multi-vehicle, mine countermeasures, autonomous underwater vehicles, markov decision process
Multiple Autonomous Underwater Vehicles (AUVs) are a potential alternative to conventional large manned vessels for mine countermeasure (MCM) operations. Online mission planning for cooperative multi-AUV network often relies or predefined contingency on reactive methods and do not deliver an optimal end-goal performance. Markov Decision Process (MDP) is a decision-making framework that allows an optimal solution, taking into account future decision estimates, rather than having a myopic view. However, most real-world problems are too complex to be represented by this framework. We deal with the complexity problem by abstracting the MCM scenario with a reduced state and action space, yet retaining the information that defines the goal and constraints coming from the application. Another critical part of the model is the ability of the vehicles to communicate and enable a cooperative mission. We use the Rendezvous Point (RP) method. The RP schedules meeting points for the vehicles throughput the mission. Our model provides an optimal action selection solution for the multi-AUV MCM problem. The computation of the mission plan is performed in the order of minutes. This quick execution demonstrates the model is feasible for real-time applications.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Electronic & Electrical Eng
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by