UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Time-dependent functional role of the contralesional motor cortex after stroke.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Volz LJ, Vollmer M, Michely J, Fink GR, Rothwell JC, Grefkes C
  • Publication date:
    25/07/2017
  • Pagination:
    165, 174
  • Journal:
    NeuroImage. Clinical
  • Volume:
    16
  • Medium:
    Electronic-eCollection
  • Print ISSN:
    2213-1582
  • Language:
    eng
  • Addresses:
    SAGE Center for the Study of the Mind, University of California, Santa Barbara, USA.
Abstract
After stroke, movements of the paretic hand rely on altered motor network dynamics typically including additional activation of the contralesional primary motor cortex (M1). The functional implications of contralesional M1 recruitment to date remain a matter of debate. We here assessed the role of contralesional M1 in 12 patients recovering from a first-ever stroke using online transcranial magnetic stimulation (TMS): Short bursts of TMS were administered over contralesional M1 or a control site (occipital vertex) while patients performed different motor tasks with their stroke-affected hand. In the early subacute phase (1-2 weeks post-stroke), we observed significant improvements in maximum finger tapping frequency when interfering with contralesional M1, while maximum grip strength and speeded movement initiation remained unaffected. After > 3 months of motor recovery, disruption of contralesional M1 activity did not interfere with performance in any of the three tasks, similar to what we observed in healthy controls. In patients with mild to moderate motor deficits, contralesional M1 has a task- and time-specific negative influence on motor performance of the stroke-affected hand. Our results help to explain previous contradicting findings on the role of contralesional M1 in recovery of function.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by