Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Bioluminescence Monitoring of Promoter Activity In Vitro and In Vivo.
  • Publication Type:
  • Authors:
    Delhove JMKM, Karda R, Hawkins KE, FitzPatrick LM, Waddington SN, McKay TR
  • Publication date:
  • Pagination:
    49, 64
  • Volume:
  • Medium:
  • Language:
  • Addresses:
    Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene's endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Maternal & Fetal Medicine
Maternal & Fetal Medicine
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by