UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
How auditory experience differentially influences the function of left and right superior temporal cortices.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Twomey T, Waters D, Price CJ, Evans S, MacSweeney M
  • Publication date:
    18/08/2017
  • Journal:
    The Journal of neuroscience : the official journal of the Society for Neuroscience
  • Medium:
    Print-Electronic
  • Print ISSN:
    0270-6474
  • Language:
    eng
  • Addresses:
    Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK.
Abstract
To investigate how hearing status, sign language experience and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects; (2) the semantic category of the objects; and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralisation analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants.SIGNIFICANCE STATEMENTThose born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC is activated regardless of demands on visual processing. In contrast, the left STC is sensitive to the demands of visuospatial processing. Furthermore, hearing signers, with the same sign language experience as the deaf participants, did not activate the STCs. Our data advance current understanding of neural plasticity by determining the differential effects that hearing status and task demands can have on left and right STC function.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
Author
Imaging Neuroscience
Author
Experimental Psychology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by