UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Light Dominates Peripheral Circadian Oscillations in Drosophila melanogaster During Sensory Conflict.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Harper REF, Ogueta M, Dayan P, Stanewsky R, Albert JT
  • Publication date:
    01/10/2017
  • Pagination:
    748730417724250
  • Journal:
    Journal of biological rhythms
  • Medium:
    Print-Electronic
  • Print ISSN:
    0748-7304
  • Language:
    eng
  • Addresses:
    Ear Institute, University College London, London, UK.
Abstract
In Drosophila, as in other animals, the circadian clock is a singular entity in name and concept only. In reality, clock functions emerge from multiple processes and anatomical substrates. One distinction has conventionally been made between a central clock (in the brain) and peripheral clocks (e.g., in the gut and the eyes). Both types of clock generate robust circadian oscillations, which do not require external input. Furthermore, the phases of these oscillations remain exquisitely sensitive to specific environmental cues, such as the daily changes of light and temperature. When these cues conflict with one another, the central clock displays complex forms of sensory integration; how peripheral clocks respond to conflicting input is unclear. We therefore explored the effects of light and temperature misalignments on peripheral clocks. We show that under conflict, peripheral clocks preferentially synchronize to the light stimulus. This photic dominance requires the presence of the circadian photoreceptor, Cryptochrome.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
The Ear Institute
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by