Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Hypsometric analysis to identify spatially variable glacial erosion
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Sternai P, Herman F, Fox MR, Castelltort S
  • Publication date:
  • Journal:
    Journal of Geophysical Research: Earth Surface
  • Volume:
  • Issue:
  • Status:
Relatively little research has been undertaken on the use of digital elevation models to recognize the spatially variable glacial imprint of a landscape. Using theoretical topographies and a landscape evolution model, we investigate to what extent the hypsometric analysis of digital elevation models may be used to recognize the glacial signature of mountain ranges. A new morphometric parameter, which we term the hypsokyrtome (from the Greek: ipsos = elevation, kyrtoma = curvature), is derived from the gradient of the hypsometric curve. The efficacy of the hypsometric integral and hypsokyrtome is tested through the study of the Ben Ohau Range, New Zealand, whose glacial imprint has been described previously. With a numerical model we further test the geomorphic parameters in describing the morphologies of regions subject to diverse climatic and tectonic conditions. The hypsokyrtome is highly sensitive to glacial erosion, and the maps produced provide insights into the spatial distribution of glacial erosion. We use SRTM data and focus on two alternative geomorphic settings: the European Alps and the Apennines. The former has been affected by both fluvial and glacial erosion while the latter mainly exhibits a fluvially dominated morphology. The correlation between elevations with increased glacial erosion and Last Glacial Maximum (LGM) equilibrium line altitudes (ELAs) suggests the prevalence of a "glacial buzz saw" in the Alps, indicating that climate may put a limit on alpine topography. Copyright 2011 by the American Geophysical Union.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by