UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A unifying motor control framework for task-specific dystonia.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Editorial Comment
  • Authors:
    Sadnicka A, Kornysheva K, Rothwell JC, Edwards MJ
  • Publication date:
    06/11/2017
  • Journal:
    Nature reviews. Neurology
  • Medium:
    Print-Electronic
  • Status:
    Published
  • Print ISSN:
    1759-4758
  • Language:
    eng
  • Addresses:
    Sobell Department for Motor Neuroscience, Institute of Neurology, University College London, 33 Queen Square, London WC1N 3BG, UK, and the Motor Control and movement Disorders Group, St George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
Abstract
Task-specific dystonia is a movement disorder characterized by a painless loss of dexterity specific to a particular motor skill. This disorder is prevalent among writers, musicians, dancers and athletes. No current treatment is predictably effective, and the disorder generally ends the careers of affected individuals. Traditional disease models of dystonia have a number of limitations with regard to task-specific dystonia. We therefore discuss emerging evidence that the disorder has its origins within normal compensatory mechanisms of a healthy motor system in which the representation and reproduction of motor skill are disrupted. We describe how risk factors for task-specific dystonia can be stratified and translated into mechanisms of dysfunctional motor control. The proposed model aims to define new directions for experimental research and stimulate therapeutic advances for this highly disabling disorder.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by