UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Knockdown of aquaporin-8 induces mitochondrial dysfunction in 3T3-L1 cells
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Ikaga R, Namekata I, Kotiadis VN, Ogawa H, Duchen MR, Tanaka H, Iida-Tanaka N
  • Publication date:
    01/12/2015
  • Pagination:
    187, 195
  • Journal:
    Biochemistry and Biophysics Reports
  • Volume:
    4
  • Status:
    Published
Abstract
© 2015 The Authors. Background: Aquaporin-8 (AQP8), a member of the aquaporin water channel family, is expressed in various tissue and cells, including liver, testis, and pancreas. AQP8 appears to have functions on the plasma membrane and/or on the mitochondrial inner membrane. Mitochondrial AQP8 with permeability for water, H2O2 and NH3 has been expected to have important role in various cells, but its information is limited to a few tissues and cells including liver and kidney. In the present study, we found that AQP8 was expressed in the mitochondria in mouse adipose tissues and 3T3-L1 preadipocytes, and investigated its role by suppressing its gene expression. Methods: AQP8-knocked down (shAQP8) cells were established using a vector expressing short hairpin RNA. Cellular localization of AQP8 was examined by western blotting and immunocytochemistry. Mitochondrial function was assessed by measuring mitochondrial membrane potential, oxygen consumption and ATP level measurements. Results: In 3T3-L1 cells, AQP8 was expressed in the mitochondria. In shAQP8 cells, mRNA and protein levels of AQP8 were decreased by about 75%. The shAQP8 showed reduced activities of complex IV and ATP synthase; it is probable that the impaired mitochondrial water handling in shAQP8 caused suppression of the electron transport and ADP phosphorylation through inhibition of the two steps which yield water. The reduced activities of the last two steps of oxidative phosphorylation in shAQP8 cause low routine and maximum capacity of respiration and mitochondrial hyperpolarization. Conclusion: Mitochondrial AQP8 contributes to mitochondrial respiratory function probably through maintenance of water homeostasis. General significance: The AQP8-knocked down cells we established provides a model system for the studies on the relationships between water homeostasis and mitochondrial function.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by