UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The APPswe/PS1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca2+ dysregulation and mitochondrial abnormalities
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Martin-de-Saavedra MD, Navarro E, Moreno-Ortega AJ, Cunha MP, Buendia I, Hernansanz-Agustín P, León R, Cano-Abad MF, Martínez-Ruiz A, Martínez-Murillo R, Duchen MR, López MG
  • Publisher:
    Wiley-Blackwell
  • Publication date:
    12/02/2018
  • Journal:
    Journal of Neurochemistry
  • Medium:
    Print-Electronic
  • Status:
    Published
  • Print ISSN:
    0022-3042
  • Language:
    eng
  • Addresses:
    Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, España.
Abstract
Growing evidence suggests a close relationship between Alzheimer's Disease (AD) and cerebral hypoxia. Astrocytes play a key role in brain homeostasis and disease states, while some of the earliest changes in AD occur in astrocytes. We have therefore asked whether mutations associated with AD increase astrocyte vulnerability to ischemia. Two astroglioma cell lines derived from APPSWE /PS1A246E (APP, amyloid precursor protein; PS1, presenilin 1) transgenic mice and controls from normal mice were subjected to oxygen and glucose deprivation (OGD), an in vitro model of ischemia. Cell death was increased in the APPSWE /PS1A246E line compared to the control. Increasing extracellular calcium concentration ([Ca2+ ]) exacerbated cell death in the mutant but not in the control cells. In order to explore cellular Ca2+ homeostasis the cells were challenged with ATP or thapsigargin and [Ca2+ ] was measured by fluorescence microscopy. Changes in cytosolic Ca2+ concentration ([Ca2+ ]c ) were potentiated in the APPSWE /PS1A246E transgenic line. Mitochondrial function was also altered in the APPSWE /PS1A246E astroglioma cells; mitochondrial membrane potential and production of reactive oxygen species were increased while mitochondrial basal respiratory rate and ATP production were decreased compared to control astroglioma cells. These results suggest that AD mutations in astrocytes make them more sensitive to ischemia; Ca2+ dysregulation and mitochondrial dysfunction may contribute to this increased vulnerability. Our results also highlight the role of astrocyte dyshomeostasis in the pathophysiology of neurodegenerative brain disorders. This article is protected by copyright. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by