UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Developing Highly Multiplexed Technology for High-throughput Super-resolution Fluorescence Microscopy
Abstract
High-Throughput imaging can reconstruct complex signalling networks, reveal unknown interactions and capture rare cellular events. Simultaneously, the development of Single Molecule Localization Super Resolution Microscopy has enabled molecular-level structural information to be obtained in a single cell. But the increase in resolution comes at a trade-off for the amount of molecular species that can be imaged and the time it takes to acquire data, all of which limit the applicability of super-resolution to high-throughput work-flows. The present work details a framework to address this. It combines three independent approaches: a microscope hardware design approach to increase the amount of data that can be obtained in a Super-Resolution experiment; an optofluidics platform that can be wholly synchronized with most microscopes; and a sequential labelling framework to increase the number of species that can be imaged in Super-Resolution in a single cell. The hardware design is validated by performing Single Molecule Localization of cytoskeleton components and its throughput is shown to be up to an order of magnitude larger than a corresponding commercial system. We demonstrate a complete optofluidics platform to integrate microfluidics with a microscope, enabling live imaging, drug application, fixation, and staining in single cells synchronized with imaging protocols. Finally, we show an efficient sequential labelling protocol that is compatible with the optofluidics platform, enabling several molecular species to be imaged in the same cells. Overall, our approach increases the speed and amount of data that can be acquired in a single of Super-Resolution experiment, as well as, by performing on-line fixation, considerably improves our capacity for High-Throughput experiments in Super-Resolution imaging.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Editor
Lab for Molecular Cell Bio MRC-UCL
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by