UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An image registration approach to automated calibration for freehand 3D ultrasound
  • Publication Type:
    Conference
  • Authors:
    Blackall JM, Rueckert D, Maurer CR, Penney GP, Hill DLG, Hawkes DJ
  • Publication date:
    01/01/2000
  • Pagination:
    462, 471
  • Published proceedings:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    1935
  • ISBN-10:
    3540411895
  • ISBN-13:
    9783540411895
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
© Springer-Verlag Berlin Heidelberg 2000. This paper describes an image registration approach to calibration for freehand three-dimensional (3D) ultrasound. If a conventional ultrasound probe is tracked using a position sensor, and the relation between this sensor and the two-dimensional (2D) image plane is known, the resulting set of B-scans may be correctly compounded into an image volume. Calibration is the process of determining the transformation (rotation, translation, and optionally image scaling) that maps B-mode image slice coordinates to points in the coordinate system of the tracking sensor mounted on the ultrasound probe. A set of 2D ultrasound images of a calibration phantom is obtained using a tracked ultrasound probe. Calibration is performed by searching for the calibration parameters that maximise the similarity between a model of the calibration phantom, which can be an image volume or a geometrical model, and the ultrasound images transformed into the coordinate space of the phantom. Validation of this calibration method is performed using a gelatin phantom. Measures of the calibration reproducibility, reconstruction precision and reconstruction accuracy are presented for this technique, and compared to those obtained using a conventional cross-wire phantom. Registration-based calibration is shown to be a rapid and accurate method of automatic calibration for freehand 3D ultrasound.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by