UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Investigation of intraoperative brain deformation using a 1.5-T interventional MR system: Preliminary results
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Maurer CR, Hill DLG, Martin AJ, Liu H, McCue M, Rueckert D, Lloret D, Hall WA, Maxwell RE, Hawkes DJ, Truwit CL
  • Publication date:
    01/01/1998
  • Pagination:
    817, 825
  • Journal:
    IEEE Transactions on Medical Imaging
  • Volume:
    17
  • Issue:
    5
  • Status:
    Published
  • Print ISSN:
    0278-0062
Abstract
All image-guided neurosurgical systems that we are aware of assume that the head and its contents behave as a rigid body. It is important to measure intraoperative brain deformation (brain shift) to provide some indication of the application accuracy of image-guided surgical systems, and also to provide data to develop and validate nonrigid registration algorithms to correct for such deformation. We are collecting data from patients undergoing neurosurgery in a high-field (1.5 T) interventional magnetic resonance (MR) scanner. High-contrast and high-resolution gradient-echo MR image volumes are collected immediately prior to surgery, during surgery, and at the end of surgery, with the patient intubated and lying on the operating table in the operative position. In this paper we report initial results from six patients: one freehand biopsy, one stereotactic functional procedure, and four resections. We investigate intraoperative brain deformation by examining threshold boundary overlays and difference images and by measuring ventricular volume. We also present preliminary results obtained using a nonrigid registration algorithm to quantify deformation. We found that some cases had much greater deformation than others, and also that, regardless of the procedure, there was very little deformation of the midline, the tentorium, the hemisphere contralateral to the procedure, and ipsilateral structures except those that are within 1 cm of the lesion or are gravitationally above the surgical site. © 1998 IEEE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by