Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Ultrasound calibration using intensity-based image registration: For application in cardiac catheterization procedures
  • Publication Type:
  • Authors:
    Ma YL, Rhode KS, Gao G, King AP, Chinchapatnam P, Schaeffter T, Hawkes DJ, Razavi R, Penney GP
  • Publication date:
  • Published proceedings:
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE
  • Volume:
  • ISBN-13:
  • Status:
  • Print ISSN:
We present a novel method to calibrate a 3D ultrasound probe which has a 2D transducer array. By optically tracking a calibrated 3D probe we are able to produce extended field of view 3D ultrasound images. Tracking also enables us to register our ultrasound images to other tracked and calibrated surgical instruments or to other tracked and calibrated imaging devices. Our method applies rigid intensity-based image registration to three or more ultrasound images. These images can either be of a simple phantom, or could potentially be images of the patient. In this latter case we would have an automated calibration system which required no phantom, no image segmentation and was optimized to the patient's ultrasound characteristics i.e. speed of sound. We have carried out experiments using a simple calibration phantom and with ultrasound images of a volunteer's liver. Results are compared to an independent gold-standard. These showed our method to be accurate to 1.43mm using the phantom images and 1.56mm using the liver data, which is slightly better than the traditional point-based calibration method (1.7mm in our experiments).
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by