Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
On the feasibility of automated mechanical ventilation control through EIT
OBJECTIVE: This paper aims to demonstrate the feasibility of coupling electrical impedance tomography (EIT) with models of lung function in order to recover parameters and inform mechanical ventilation control. METHODS: A compartmental ordinary differential equation model of lung function is coupled to simulations of EIT, assuming accurate modelling and movement tracking, to generate time series values of bulk conductivity. These values are differentiated and normalised against the total air volume flux to recover regional volumes and flows. These ventilation distributions are used to recover regional resistance and elastance properties of the lung. Linear control theory is used to demonstrate how these parameters may be used to generate a patient-specific pressure mode control. RESULTS: Ventilation distributions are shown to be recoverable, with Euclidean norm errors in air flow below 9% and volume below 3%. The parameters are also shown to be recoverable, although errors are higher for resistance values than elastance. The control constructed is shown to have minimal H¹ semi-norm resulting in bounded magnitudes and minimal gradients. CONCLUSION: The recovery of regional ventilation distributions and lung parameters is feasible with the use of EIT. These parameters may then be used in model based control schemes to provide patient-specific care. SIGNIFICANCE: For pulmonary-intensive-care patients mechanical ventilation is a life saving intervention, careful calibration of pressure settings. Both magnitudes and gradients of pressure can all contribute to ventilator induced lung injury. Retrieving regional lung parameters allows the design of patient-specific ventilator controls to reduce injury.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by