Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Assessing TMS-induced D and I waves with spinal H-reflexes.
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Niemann N, Wiegel P, Kurz A, Rothwell JC, Leukel C
  • Publication date:
  • Pagination:
    933, 943
  • Journal:
    Journal of neurophysiology
  • Volume:
  • Issue:
  • Medium:
  • Status:
  • Print ISSN:
  • Language:
  • Addresses:
    Department of Sport Science, University of Freiburg , Freiburg , Germany.
Transcranial magnetic stimulation (TMS) of motor cortex produces a series of descending volleys known as D (direct) and I (indirect) waves. In the present study, we questioned whether spinal H-reflexes can be used to dissect D waves and early and late I waves from TMS. We therefore probed H-reflex facilitation at arrival times of D and I waves at the spinal level and thereby changed TMS parameters that have previously been shown to have selective effects on evoked D and different I waves. We changed TMS intensity and current direction and applied a double-pulse paradigm known as short-interval intracortical inhibition (SICI). Experiments were conducted in flexor carpi radialis (FCR) in the arm and soleus (SOL) in the leg. There were two major findings: 1) in FCR, H-reflex facilitation showed characteristic modulations with altered TMS parameters that correspond to the changes of evoked D and I waves; and 2) H-reflexes in SOL did not, possibly because of increased interference from other spinal circuits. Therefore, the most significant outcome of this study is that in FCR, H-reflexes combined with TMS seem to be a useful technique to dissect TMS-induced D and I waves. NEW & NOTEWORTHY Questions that relate to corticospinal function in pathophysiology and movement control demand sophisticated techniques to provide information about corticospinal mechanisms. We introduce a noninvasive electrophysiological technique that may be useful in describing such mechanisms in more detail by dissecting D and I waves from transcranial magnetic stimulation (TMS). Based on the combination of spinal H-reflexes and TMS in the flexor carpi radialis muscle, the technique was shown to measure selective effects on D and I waves from changing TMS parameters.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by