UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning–proof of concept in congenital heart disease
Abstract
© 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine Purpose: Real-time assessment of ventricular volumes requires high acceleration factors. Residual convolutional neural networks (CNN) have shown potential for removing artifacts caused by data undersampling. In this study, we investigated the ability of CNNs to reconstruct highly accelerated radial real-time data in patients with congenital heart disease (CHD). Methods: A 3D (2D plus time) CNN architecture was developed and trained using synthetic training data created from previously acquired breath hold cine images from 250 CHD patients. The trained CNN was then used to reconstruct actual real-time, tiny golden angle (tGA) radial SSFP data (13 × undersampled) acquired in 10 new patients with CHD. The same real-time data was also reconstructed with compressed sensing (CS) to compare image quality and reconstruction time. Ventricular volume measurements made using both the CNN and CS reconstructed images were compared to reference standard breath hold data. Results: It was feasible to train a CNN to remove artifact from highly undersampled radial real-time data. The overall reconstruction time with the CNN (including creation of aliased images) was shown to be >5 × faster than the CS reconstruction. In addition, the image quality and accuracy of biventricular volumes measured from the CNN reconstructed images were superior to the CS reconstructions. Conclusion: This article has demonstrated the potential for the use of a CNN for reconstruction of real-time radial data within the clinical setting. Clinical measures of ventricular volumes using real-time data with CNN reconstruction are not statistically significantly different from gold-standard, cardiac-gated, breath-hold techniques.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
Childrens Cardiovascular Disease
Author
Childrens Cardiovascular Disease
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by