UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Fast Gaussian process methods for point process intensity estimation
  • Publication Type:
    Conference
  • Authors:
    Cunningham JP, Shenoy KV, Sahani M
  • Publication date:
    01/01/2008
  • Pagination:
    192, 199
  • Published proceedings:
    Proceedings of the 25th International Conference on Machine Learning
  • ISBN-13:
    9781605582054
  • Status:
    Published
Abstract
Point processes are difficult to analyze because they provide only a sparse and noisy observation of the intensity function driving the process. Gaussian Processes offer an attractive framework within which to infer underlying intensity functions. The result of this inference is a continuous function defined across time that is typically more amenable to analytical efforts. However, a naive implementation will become computationally infeasible in any problem of reasonable size, both in memory and run time requirements. We demonstrate problem specific methods for a class of renewal processes that eliminate the memory burden and reduce the solve time by orders of magnitude. Copyright 2008 by the author(s)/owner(s).
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Gatsby Computational Neurosci Unit
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by