UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An image-based model of brain volume biomarker changes in Huntington's disease
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Wijeratne PA, Young AL, Oxtoby NP, Marinescu RV, Firth NC, Johnson EB, Mohan A, Sampaio C, Scahill RI, Tabrizi SJ, Alexander DC
  • Publication date:
    01/05/2018
  • Journal:
    Annals of Clinical and Translational Neurology
  • Status:
    Accepted
Abstract
© 2018 American Neurological Association. Objective: Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. Methods: We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. Results: The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. Interpretation: We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Computer Science
Author
Neurodegenerative Diseases
Author
Dept of Computer Science
Author
Neurodegenerative Diseases
Author
Neurodegenerative Diseases
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by