Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, Martin CK, Syedbasha M, Maiolica A, White I, Mercer J, Wollscheid B
-
Publication date:09/04/2018
-
Pagination:1, 12
-
Journal:Nature Microbiology
-
Status:Accepted
-
Full Text URL:
Abstract
© 2018 The Author(s) To orchestrate context-dependent signalling programmes, poxviruses encode two dual-specificity enzymes, the F10 kinase and the H1 phosphatase. These signalling mediators are essential for poxvirus production, yet their substrate profiles and systems-level functions remain enigmatic. Using a phosphoproteomic screen of cells infected with wild-type, F10 and H1 mutant vaccinia viruses, we systematically defined the viral signalling network controlled by these enzymes. Quantitative cross-comparison revealed 33 F10 and/or H1 phosphosites within 17 viral proteins. Using this proteotype dataset to inform genotype–phenotype relationships, we found that H1-deficient virions harbour a hidden hypercleavage phenotype driven by reversible phosphorylation of the virus protease I7 (S134). Quantitative phosphoproteomic profiling further revealed that the phosphorylation-dependent activity of the viral early transcription factor, A7 (Y367), underlies the transcription-deficient phenotype of H1 mutant virions. Together, these results highlight the utility of combining quantitative proteotype screens with mutant viruses to uncover proteotype–phenotype–genotype relationships that are masked by classical genetic studies.
› More
search options
UCL Researchers