Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
On the causation and timing of mutations during cancer evolution
Mutations are the proximal causes of cancer and of drug resistance. Better understanding the causation of mutations before and during cancer can open up avenues for improved cancer prevention and treatment. Early mutations may be of particular interest for therapeutic targeting and early detection. In Chapter 2, I use a mathematical model of breast cancer development to assess the hypothesis that varying numbers of progenitor cells causes a slow-down in mutation accumulation. In Chapter 3, I present an adapted method to time the accumulation of copy number changes using sequencing data, and an application of this method in colorectal cancer. This application supports the hypothesis of a catastrophic process where multiple copy number alterations develop at the same time in colorectal cancer. In Chapter 4, I present evidence that a mutational process linked to defects in the POLE gene causes key driver mutations in colorectal and endometrial cancer. Based on this evidence and other analyses I argue that POLE mutations are very early events in colorectal and endometrial cancer. In Chapter 5, I build on the ideas presented in Chapter 4 to assess the causation of driver mutations by mutational processes in a pan-cancer analysis. These results suggest causal explanations for key driver mutations in terms of mutational processes, and shed light on the important underlying biology of selection of driver mutations. In whole my work expands our knowledge of the effects of mutational processes on cancer mutations and the timing of these mutations, indicates research strategies for novel approaches to cancer prevention and treatment, and informs our understanding of the biological context of cancer evolution.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Arts and Sciences (BASc)
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by