Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Approximate Oracles and Synergy in Software Energy Search Spaces
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Bruce BR, Petke J, Harman M, Barr ET
  • Publication date:
  • Journal:
    IEEE Transactions on Software Engineering
  • Status:
  • Print ISSN:
IEEE Reducing the energy consumption of software systems though optimisations techniques such as genetic improvement is gaining interest. However, efficient and effective improvement of software systems requires a better understanding of the code-change search space. One important choice practitioners have is whether to preserve the system & #x0027;s original output or permit approximation with each scenario having its own search space characteristics. When output preservation is a hard constraint, we report that the maximum energy reduction achievable by the modification operators is 2.69% (0.76% on average). By contrast, this figure increases dramatically to 95.60% (33.90% on average) when approximation is permitted, indicating the critical importance of approximate output quality assessment for code optimisation. We investigate synergy, a phenomenon that occurs when simultaneously applied source code modifications produce an effect greater than their individual sum. Our results reveal that 12.0% of all joint code modifications produced such a synergistic effect though 38.5% produce an antagonistic interaction in which simultaneously applied modifications are less effective than when applied individually. This highlights the need for more advanced search-based approaches.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
Dept of Computer Science
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by