Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multi-parametric mixed integer linear programming under global uncertainty
© 2018 The Authors Major application areas of the process systems engineering, such as hybrid control, scheduling and synthesis can be formulated as mixed integer linear programming (MILP) problems and are naturally susceptible to uncertainty. Multi-parametric programming theory forms an active field of research and has proven to provide invaluable tools for decision making under uncertainty. While uncertainty in the right-hand side (RHS) and in the objective function's coefficients (OFC) have been thoroughly studied in the literature, the case of left-hand side (LHS) uncertainty has attracted significantly less attention mainly because of the computational implications that arise in such a problem. In the present work, we propose a novel algorithm for the analytical solution of multi-parametric MILP (mp-MILP) problems under global uncertainty, i.e. RHS, OFC and LHS. The exact explicit solutions and the corresponding regions of the parametric space are computed while a number of case studies illustrates the merits of the proposed algorithm.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemical Engineering
Dept of Chemical Engineering
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by