UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Generating steganographic images via adversarial training
  • Publication Type:
    Conference
  • Authors:
    Hayes J, Danezis G
  • Publication date:
    04/12/2017
  • Pagination:
    1955, 1964
  • Published proceedings:
    Advances in Neural Information Processing Systems
  • Volume:
    2017-December
  • Status:
    Published
  • Name of conference:
    Neural Information Processing Systems (NIPS) 2017
  • Conference place:
    Long Beach, California
  • Conference start date:
    04/12/2018
  • Conference finish date:
    09/12/2018
  • Print ISSN:
    1049-5258
Abstract
© 2017 Neural information processing systems foundation. All rights reserved. Adversarial training has proved to be competitive against supervised learning methods on computer vision tasks. However, studies have mainly been confined to generative tasks such as image synthesis. In this paper, we apply adversarial training techniques to the discriminative task of learning a steganographic algorithm. Steganography is a collection of techniques for concealing the existence of information by embedding it within a non-secret medium, such as cover texts or images. We show that adversarial training can produce robust steganographic techniques: our unsupervised training scheme produces a steganographic algorithm that competes with state-of-the-art steganographic techniques. We also show that supervised training of our adversarial model produces a robust steganalyzer, which performs the discriminative task of deciding if an image contains secret information. We define a game between three parties, Alice, Bob and Eve, in order to simultaneously train both a steganographic algorithm and a steganalyzer. Alice and Bob attempt to communicate a secret message contained within an image, while Eve eavesdrops on their conversation and attempts to determine if secret information is embedded within the image. We represent Alice, Bob and Eve by neural networks, and validate our scheme on two independent image datasets, showing our novel method of studying steganographic problems is surprisingly competitive against established steganographic techniques.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by