UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Rotationally driven magnetic reconnection in Saturn’s dayside
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Letter
  • Authors:
    Guo RL, Yao ZH, Wei Y, Ray LC, Rae IJ, Arridge CS, Coates AJ, Delamere PA, Sergis N, Kollmann P, Grodent D, Dunn WR, Waite JH, Burch JL, Pu ZY, Palmaerts B, Dougherty MK
  • Publisher:
    Springer Nature
  • Publication date:
    01/08/2018
  • Pagination:
    640, 645
  • Journal:
    Nature Astronomy
  • Volume:
    2
  • Issue:
    8
  • Status:
    Published
  • Language:
    English
  • Keywords:
    Giant planets, Magnetospheric physics
Abstract
Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares, solar flares and stunning aurorae. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn’s dayside magnetosphere. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn’s magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of ~2.6 mW m⁻² within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons and auroral pulsations.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Space & Climate Physics
Author
Dept of Space & Climate Physics
Author
Dept of Space & Climate Physics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by