UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Absence of Stress-Induced Anisotropy During Brittle Deformation in Antigorite Serpentinite
Abstract
©2018. American Geophysical Union. All Rights Reserved. Knowledge of the seismological signature of serpentinites during deformation is fundamental for interpreting seismic observations in subduction zones, but this has yet to be experimentally constrained. We measured compressional and shear wave velocities during brittle deformation in polycrystalline antigorite, at room temperature and varying confining pressures up to 150 MPa. Ultrasonic velocity measurements, at varying directions to the compression axis, were combined with mechanical measurements of axial and volumetric strain, during direct loading and cyclic loading triaxial deformation tests. An additional deformation experiment was conducted on a specimen of Westerly granite for comparison. At all confining pressures, brittle deformation in antigorite is associated with a spectacular absence of stress-induced anisotropy and with no noticeable dependence of wave velocities on axial compressive stress, prior to rock failure. The strength of antigorite samples is comparable to that of granite, but the mechanical behavior is elastic up to high stress (≳ 80% of rock strength) and nondilatant. Microcracking is only observed in antigorite specimens taken to failure and not in those loaded even at 90–95% of their compressive strength. Microcrack damage is extremely localized near the fault and consists of shear microcracks that form exclusively along the cleavage plane of antigorite crystals. Our observations demonstrate that brittle deformation in antigorite occurs entirely by “mode II” shear microcracking. This is all the more remarkable than the preexisting microcrack population in antigorite, is comparable to that in granite. The mechanical behavior and seismic signature of antigorite brittle deformation thus appears to be unique within crystalline rocks.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
Author
Dept of Earth Sciences
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by