UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Non-Parametric Mixture Modelling and its Application to Disease Progression Modelling
Abstract
Abstract Dementia is characterised by its progressive degeneration of cognitive abilities. In research cohorts, detailed neuropsychological test batteries are often administered to better understand how cognition changes over time. Understanding cognitive changes in dementia is of great importance, particularly in determining how structural changes in the brain may affect cognition and in facilitating earlier detection of symptomatic changes. Disease progression models are often applied to these data to understand how a disease changes over time from cross-sectional data or to disease trajectories from large numbers of individuals. Previous disease progression models used to build longitudinal models from cross-sectional data have focused on brain imaging data; however, these models are not directly applicable to cognitive data. Here we use the novel, non-parametric, Kernel Density Estimation Mixture Modelling (KDEMM) approach and demonstrate accurate modelling of the progression of cognitive test data. We found that using KDEMM resulted in more accurate models of disease progression in simulated data compared to Gaussian Mixture Models (GMMs) for the majority of parameters used to simulate the data. When comparing KDEMM and GMM to cognitive data collected in different Alzheimers Disease subtypes, we found the KDEMM resulted in a model much more in line with clinical phenotype. We anticipate that the KDEMM will be used to integrate cognitive test data, and other non-normally distributed datasets into complex disease progression models.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Computer Science
Author
Neurodegenerative Diseases
Author
Neurodegenerative Diseases
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by