UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Targeting pericytes for therapeutic approaches to neurological disorders.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Review
  • Authors:
    Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D
  • Publication date:
    10/08/2018
  • Journal:
    Acta Neuropathol
  • Status:
    Published online
  • Country:
    Germany
  • PII:
    10.1007/s00401-018-1893-0
  • Language:
    eng
  • Keywords:
    Alzheimer’s, Blood–brain barrier, Capillary, Diabetes, Ischaemia, Pericyte, Spinal cord injury
Abstract
Many central nervous system diseases currently lack effective treatment and are often associated with defects in microvascular function, including a failure to match the energy supplied by the blood to the energy used on neuronal computation, or a breakdown of the blood-brain barrier. Pericytes, an under-studied cell type located on capillaries, are of crucial importance in regulating diverse microvascular functions, such as angiogenesis, the blood-brain barrier, capillary blood flow and the movement of immune cells into the brain. They also form part of the "glial" scar isolating damaged parts of the CNS, and may have stem cell-like properties. Recent studies have suggested that pericytes play a crucial role in neurological diseases, and are thus a therapeutic target in disorders as diverse as stroke, traumatic brain injury, migraine, epilepsy, spinal cord injury, diabetes, Huntington's disease, Alzheimer's disease, diabetes, multiple sclerosis, glioma, radiation necrosis and amyotrophic lateral sclerosis. Here we report recent advances in our understanding of pericyte biology and discuss how pericytes could be targeted to develop novel therapeutic approaches to neurological disorders, by increasing blood flow, preserving blood-brain barrier function, regulating immune cell entry to the CNS, and modulating formation of blood vessels in, and the glial scar around, damaged regions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Neuro, Physiology & Pharmacology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by