UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Ibrahim Abouelamaiem D, Mostazo-López MJ, He G, Patel D, Neville TP, Parkin IP, Lozano-Castelló D, Morallón E, Cazorla-Amorós D, Jorge AB, Wang R, Ji S, Titirici MM, Shearing PR, Brett DJL
  • Publication date:
    01/10/2018
  • Pagination:
    337, 347
  • Journal:
    Journal of Energy Storage
  • Volume:
    19
  • Status:
    Accepted
Abstract
© 2018 The Authors Activated carbons, with different surface chemistry and porous textures, were used to study the mechanism of electrochemical hydrogen and oxygen evolution in supercapacitor devices. Cellulose precursor materials were activated with different potassium hydroxide (KOH) ratios, and the electrochemical behaviour was studied in 6 M KOH electrolyte. In situ Raman spectra were collected to obtain the structural changes of the activated carbons under severe electrochemical oxidation and reduction conditions, and the obtained data were correlated to the cyclic voltammograms obtained at high anodic and cathodic potentials. Carbon-hydrogen bonds were detected for the materials activated at high KOH ratios, which form reversibly under cathodic conditions. The influence of the specific surface area, narrow microporosity and functional groups in the carbon electrodes on their chemical stability and hydrogen capture mechanism in supercapacitor applications has been revealed.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
Author
Faculty of Maths & Physical Sciences
Author
Dept of Chemical Engineering
Author
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by