UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Role of glutamine synthetase in angiogenesis beyond glutamine synthesis
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Eelen G, Dubois C, Cantelmo AR, Goveia J, Brüning U, DeRan M, Jarugumilli G, van Rijssel J, Saladino G, Comitani F, Zecchin A, Rocha S, Chen R, Huang H, Vandekeere S, Kalucka J, Lange C, Morales-Rodriguez F, Cruys B, Treps L, Ramer L, Vinckier S, Brepoels K, Wyns S, Souffreau J, Schoonjans L, Lamers WH, Wu Y, Haustraete J, Hofkens J, Liekens S, Cubbon R, Ghesquière B, Dewerchin M, Gervasio FL, Li X, van Buul JD, Wu X, Carmeliet P
  • Publication date:
    06/09/2018
  • Pagination:
    63, 69
  • Journal:
    Nature
  • Volume:
    561
  • Issue:
    7721
  • Status:
    Published
  • Print ISSN:
    0028-0836
Abstract
© 2018, Springer Nature Limited. Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by