UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Koster R, Chadwick MJ, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D
  • Publication date:
    19/09/2018
  • Pagination:
    1342, 1354.e6
  • Journal:
    Neuron
  • Volume:
    99
  • Issue:
    6
  • Status:
    Published
  • Print ISSN:
    0896-6273
Abstract
© 2018 Elsevier Inc. Recent evidence challenges the widely held view that the hippocampus is specialized for episodic memory, by demonstrating that it also underpins the integration of information across experiences. Contemporary computational theories propose that these two contrasting functions can be accomplished by big-loop recurrence, whereby the output of the system is recirculated back into the hippocampus. We use ultra-high-resolution fMRI to provide support for this hypothesis, by showing that retrieved information is presented as a new input on the superficial entorhinal cortex—driven by functional connectivity between the deep and superficial entorhinal layers. Further, the magnitude of this laminar connectivity correlated with inferential performance, demonstrating its importance for behavior. Our findings offer a novel perspective on information processing within the hippocampus and support a unifying framework in which the hippocampus captures higher-order structure across experiences, by creating a dynamic memory space from separate episodic codes for individual experiences. The hippocampus is central for storing distinct episodes, while also supporting integration across related episodes. Using ultra-high-resolution fMRI, Koster et al. provide evidence for a core computational principle (big-loop recurrence) that can account for these apparently conflicting hippocampal roles.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by