UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The role of CA1 α-adrenoceptor on scopolamine induced memory impairment in male rats
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Azami NS, Piri M, Jahanshahi M, Oryan S, Babapour V, Zarrindast MR
  • Publication date:
    01/03/2010
  • Pagination:
    66, 77
  • Journal:
    Physiology and Pharmacology
  • Volume:
    14
  • Issue:
    1
  • Status:
    Published
  • Print ISSN:
    1735-0581
Abstract
Introduction: Similarities in the memory impairment between Alzheimer patients and scopolamine treated animals have been reported. In the present study, the possible role of α-adrenergic receptors of the dorsal hippocampus on scopolamine state-dependent memory in adult male Wistar rats was evaluated. Methods: The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24 h after training to measure step-through latency. Results: Post-training intra-CA1 administration of scopolamine (0.5 and 2μg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. Amnesia produced by post-training scopolamine (2 μg/rat) was reversed by pre-test administration of the scopolamine (0.5 and 2 μg/rat) that is due to a state-dependent effect. Pre-test intra-CA1 injection of α1-adrenoceptor agonist, phenylephrine (0.25, 0.5 μg/rat) in the dose range that we used, could not affect memory impairment induced by post-training injection of scopolamine (2 μg/rat). However intra-CA1 pretest injection of α2-adrenoceptor agonist, clonidine (0.5 μg/rat) improved post-training scopolamine (2 μg/rat) intra-CA1 injection induced retrieval impairment. Furthermore, pre-test intra-CA1 microinjection of phenylephrine (0.25 and 0.5 μg/rat) or clonidine (0.25 and 0.5 μg/rat) with an ineffective dose of scopolamine (0.25 μg/rat), synergistically improved memory performance impaired by post-training scopolamine (2 μg/rat). Our results also showed that, pre-test injection of α1-receptor antagonist prazosin (1, 2 μg/rat) or α2-receptors antagonist yohimbine (1, 2 μg/rat) before effective dose of scopolamine (2 μg/rat) prevented the improvement of memory by pre-test scopolamine. Conclusion: These results suggest that α1- and α2-adrenergic receptors of the dorsal hippocampal CA1 region may play an important role in scopolamine-induced amnesia and scopolamine state-dependent memory.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
UCL Queen Square Institute of Neurology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by