Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The Relationship Between Microfracture Damage and the Physical Properties of Fault-Related Rocks: The Gole Larghe Fault Zone, Italian Southern Alps
©2018. The Authors. Although geological, seismological, and geophysical evidence indicates that fracture damage and physical properties of fault-related rocks are intimately linked, their relationships remain poorly constrained. Here we correlate quantitative observations of microfracture damage within the exhumed Gole Larghe Fault Zone (Italian Southern Alps) with ultrasonic wave velocities and permeabilities measured on samples collected along a 1.5-km-long transect across the fault zone. Ultrasonic velocity and permeability correlate systematically with the measured microfracture intensity. In the center of the fault zone where microfractures were pervasively sealed, P wave velocities are the highest and permeability is relatively low. However, neither the crack porosity nor the permeability derived by modeling the velocity data using an effective-medium approach correlates well with the microstructural and permeability measurements, respectively. The applied model does not account for sealing of microfractures but assumes that all variations in elastic properties are due to microfracturing. Yet we find that sealing of microfractures affects velocities significantly in the more extensively altered samples. Based on the derived relationships between microfracture damage, elastic and hydraulic properties, and mineralization history, we (i) assess to what extent wave velocities can serve as a proxy for damage structure and (ii) use results on the present-day physical and microstructural properties to derive information about possible postseismic recovery processes. Our estimates of velocity changes associated with sealing of microfractures quantitatively agree with seismological observations of velocity recovery following earthquakes, which suggests that the recovery is at least in part due to the sealing of microfractures.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by