UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Enhanced deviant responses in patterned relative to random sound sequences
Abstract
© 2018 The Authors The brain draws on knowledge of statistical structure in the environment to facilitate detection of new events. Understanding the nature of this representation is a key challenge in sensory neuroscience. Specifically, it is unknown whether real-time perception of rapidly-unfolding sensory signals is driven by a coarse or detailed representation of the proximal stimulus history. We recorded electroencephalography brain responses to frequency outliers in regularly-patterned (REG) versus random (RAND) tone-pip sequences which were generated anew on each trial. REG and RAND sequences were matched in frequency content and span, only differing in the specific order of the tone-pips. Stimuli were very rapid, limiting conscious reasoning in favour of automatic processing of regularity. Listeners were naïve and performed an incidental visual task. Outliers within REG evoked a larger response than matched outliers in RAND. These effects arose rapidly (within 80 msec) and were underpinned by distinct sources from those classically associated with frequency-based deviance detection. These findings are consistent with the notion that the brain continually maintains a detailed representation of ongoing sensory input and that this representation shapes the processing of incoming information. Predominantly auditory-cortical sources code for frequency deviance whilst frontal sources are associated with tracking more complex sequence structure.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
The Ear Institute
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by