UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Actomyosin controls planarity and folding of epithelia in response to compression
  • Publication Type:
    Working discussion paper
  • Authors:
    Wyatt T, Fouchard J, Lisica A, Khalilgharibi N, Baum B, Recho P, Kabla A, Charras G
  • Publication date:
    20/09/2018
  • Status:
    Published
Abstract

ABSTRACT

Throughout embryonic development and adult life, epithelia are subjected to external forces. The resulting deformations can have a profound impact on tissue development and function. These include compressive deformations which, although hard to study in model systems due to the confounding effects of the substrate, are thought to play an important role in tissue morphogenesis by inducing tissue folding and by triggering mechanosensitive responses including cell extrusion and cell differentiation. Here, using suspended epithelia, we are able to uncover the immediate response of epithelial tissues to the application of large (5-80%) in-plane compressive strains. We show that fast compression induces tissue buckling followed by active tissue flattening which erases the buckle within tens of seconds. Strikingly, there is a well-defined limit to this second response, so that stable folds form in the tissue for compressive strains larger than ∼35%. Finally, a combination of experiment and modelling shows that the response to compression is orchestrated by the automatic adaptation of the actomyosin cytoskeleton as it re-establishes tension in compressed tissues. Thus, tissue pre-tension allows epithelia to both buffer against fast compression and regulate folding.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
London Centre for Nanotechnology
Author
Lab for Molecular Cell Bio MRC-UCL
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by