UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Better Image Segmentation by Exploiting Dense Semantic Predictions
  • Publication Type:
    Internet publication
  • Authors:
    Zhao Q, Griffin L
  • Publisher:
    arXiv
  • Publication date:
    05/06/2016
Abstract
It is well accepted that image segmentation can benefit from utilizing multilevel cues. The paper focuses on utilizing the FCNN-based dense semantic predictions in the bottom-up image segmentation, arguing to take semantic cues into account from the very beginning. By this we can avoid merging regions of similar appearance but distinct semantic categories as possible. The semantic inefficiency problem is handled. We also propose a straightforward way to use the contour cues to suppress the noise in multilevel cues, thus to improve the segmentation robustness. The evaluation on the BSDS500 shows that we obtain the competitive region and boundary performance. Furthermore, since all individual regions can be assigned with appropriate semantic labels during the computation, we are capable of extracting the adjusted semantic segmentations. The experiment on Pascal VOC 2012 shows our improvement to the original semantic segmentations which derives directly from the dense predictions.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by