UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Disturbing stability of interface by adopting phase-change temperature gradient to reduce ice adhesion strength
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Chen T, Jin J, Qi Y, Tian W, Cong Q, Choy KL
  • Publication date:
    02/2019
  • Pagination:
    69, 75
  • Journal:
    Cold Regions Science and Technology
  • Volume:
    158
  • Status:
    Accepted
  • Print ISSN:
    0165-232X
Abstract
© 2018 Elsevier B.V. The study proposes a novel de-icing model that established a phase-change temperature gradient on an interface to alter the contact stability between the substrate surface and the ice cover. During the experiment, pits of the same size were machined on the surface of aluminum alloy and polymethyl methacrylate, which are both regarded as the experimental materials, and ethanol solutions with different freezing points were filled in the pits. The ice adhesion strength on each substrate was repeatedly measured under different conditions. The results show that the ice adhesion strength on a sample with a phase-change temperature gradient was significantly reduced when compared to the ice adhesion strength on a smooth sample. That meant that the proposed de-icing model had the excellent de-icing capability. Owing to the rigid constraints of the pit boundaries and different mass concentrations of the ethanol solutions, an ethanol solution filling in the pits at different positions had an intermittent impact on the elastic interface between the ice and substrate. This deformed the interface, and the accumulated ice was always subjected to an upward impingement load, which affected the contact stability of the interface and causing the accumulated ice to separate from the sample surface. The energy released from the solution at low temperature could be used to enhance the active de-icing of various components, and to advance the development of new de-icing methods and materials.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by