Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Comparative analysis of H2-diesel co-combustion in a single cylinder engine and a chassis dynamometer vehicle
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Talibi M, Hellier P, Watkinson M, Ladommatos N
  • Publication date:
  • Journal:
    International Journal of Hydrogen Energy
  • Status:
  • Print ISSN:
© 2018 The Author(s) Concerns as to the adverse effects of diesel engine exhaust on urban air quality have resulted in increasingly stringent emissions legislation, with the prospect of many major global cities potentially banning diesel vehicles. Emissions of nitrogen oxides (NOx) and particulate matter (PM) are linked to increases in premature mortality, and the simultaneous control of both pollutants through modified combustion strategies presents a significant challenge. In this work, the effects of displacing diesel fuel with hydrogen on exhaust emissions were investigated in both a single cylinder research engine and in a demonstration vehicle. In the initial stage, tests were undertaken on a supercharged, direct injection, single cylinder diesel research engine at different engine loads, intake air pressures and EGR levels. Hydrogen was aspirated with the intake air, and EGR was simulated by supplying the intake pipe with compressed nitrogen gas. The results showed a reduction in CO2 and particulate emissions with increasing H2 addition, and an increase in NOx emissions at H2 levels greater than 10% of the total input energy to the engine. The next stage involved tests on a chassis dynamometer with a small van equipped with the multi-cylinder version of the single cylinder research engine. The van was fitted with a programmable H2 augmentation system, with H2 addition levels specified by accelerator pedal position. During full drive cycle tests conducted with and without H2 augmentation up to 10%, an average rate of 1 kW of H2 was supplied to the engine. With H2 augmentation, over the total drive-cycle, reductions in CO, NOx and particle number were observed, but a higher total PM mass was recorded.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Mechanical Engineering
Dept of Mechanical Engineering
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by