Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Longitudinal regional brain volume changes quantified in normal aging and Alzheimer's APP × PS1 mice using MRI
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Maheswaran S, Barjat H, Rueckert D, Bate ST, Howlett DR, Tilling L, Smart SC, Pohlmann A, Richardson JC, Hartkens T, Hill DLG, Upton N, Hajnal JV, James MF
  • Publication date:
  • Pagination:
    19, 32
  • Journal:
    Brain Research
  • Volume:
  • Status:
  • Print ISSN:
In humans, mutations of amyloid precursor protein (APP) and presenilins (PS) 1 and 2 are associated with amyloid deposition, brain structural change and cognitive decline, like in Alzheimer's disease (AD). Mice expressing these proteins have illuminated neurodegenerative disease processes but, unlike in humans, quantitative imaging has been little used to systematically determine their effects, or those of normal aging, on brain structure in vivo. Accordingly, we investigated wildtype (WT) and TASTPM mice (expressing human APP695(K595N, M596L) × PS1(M146V)) longitudinally using MRI. Automated global and local image registration, allied to a standard digital atlas, provided pairwise segmentation of 13 brain regions. We found the mature mouse brain, unlike in humans, enlarges significantly from 6-14 months old (WT 3.8 ± 1.7%, mean ± SD, P < 0.0001). Significant changes were also seen in other WT brain regions, providing an anatomical benchmark for comparing other mouse strains and models of brain disorder. In TASTPM, progressive amyloidosis and astrogliosis, detected immunohistochemically, reflected even larger whole brain changes (5.1 ± 1.4%, P < 0.0001, transgene × age interaction P = 0.0311). Normalising regional volumes to whole brain measurements revealed significant, prolonged, WT-TASTPM volume differences, suggesting transgene effects establish at < 6 months old of age in most regions. As in humans, gray matter-rich regions decline with age (e.g. thalamus, cerebral cortex and caudoputamen); ventricles and white matter (corpus callosum, corticospinal tract, fornix system) increase; in TASTPMs such trends often varied significantly from WT (especially hippocampus). The pervasive, age-related structural changes between WT and AD transgenic mice (and mouse and human) suggest subtle but fundamental species differences and AD transgene effects. © 2009 Elsevier B.V. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by