Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Biomechanical simulation of atrophy in MR images
  • Publication Type:
  • Authors:
    Smith ADC, Crum WR, Hill DLG, Thacker NA, Bromiley PA
  • Publication date:
  • Pagination:
    481, 490
  • Published proceedings:
    Proceedings of SPIE - The International Society for Optical Engineering
  • Volume:
    5032 I
  • Status:
  • Print ISSN:
Progressive cerebral atrophy is a physical component of the most common forms of dementia - Alzheimer's disease, vascular dementia, Lewy-Body disease and fronto-temporal dementia. We propose a phenomenological simulation of atrophy in MR images that provides gold-standard data; the origin and rate of progression of atrophy can be controlled and the resultant remodelling of brain structures is known. We simulate diffuse global atrophic change by generating global volumetric change in a physically realistic biomechanical model of the human brain. Thermal loads are applied to either single, or multiple, tissue types within the brain to drive tissue expansion or contraction. Mechanical readjustment is modelled using finite element methods (FEM). In this preliminary work we apply these techniques to the MNI brainweb phantom to produce new images exhibiting global diffuse atrophy. We compare the applied atrophy with that measured from the images using an established quantitative technique. Early results are encouraging and suggest that the model can be extended and used for validation of atrophy measurement techniques and non-rigid image registration, and for understanding the effect of atrophy on brain shape.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by