Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
XMR guided cardiac electrophysiology study and radio frequency ablation
  • Publication Type:
  • Authors:
    Rhode KS, Sermesant M, Hegde S, Sanchez-Ortiz G, Rueckert D, Razavi R, Hill DLG
  • Publication date:
  • Pagination:
    10, 21
  • Published proceedings:
    Proceedings of SPIE - The International Society for Optical Engineering
  • Volume:
  • Status:
  • Print ISSN:
Introduction: XMR systems are a new type of interventional facility in which patients can be rapidly transferred between x-ray and MR systems on a floating table. We have previously developed a technique to register MR and x-ray images obtained from such systems. We are carrying out a programme of XMR guided cardiac electrophysiology study (EPS) and radio frequency ablation (RFA). Aim: The aim of our work was to apply our registration technology to XMR guided EPS/RFA in order to integrate anatomical, electrophysiological and motion information. This would assist in guidance and allow us to validate and refine electromechanical models. Method: Registration of the imaging modalities was achieved by a combination of system calibration and real-time optical tracking. Patients were initially imaged using MR imaging. An SSFP volume scan of the heart was acquired for anatomical information, followed by tagged scans for motion information. The patients were then transferred to the x-ray system. Tracked biplane x-ray images were acquired while electrical measurements were made from catheters placed in the heart. The relationship between the MR and x-ray images was determined. The MR volume scan of the heart was segmented and the tagged scans were analysed using a non-rigid registration algorithm to compute motion. The position of catheters was reconstructed within the MR cardiac anatomy. The anatomical, electrophysiological, and motion information were displayed in the same coordinate system. Simulations of electrical depolarisation and contraction were performed using electromechanical models of the myocardium. Results: We present results for 2 initial cases. For patient 1, a contact mapping system was used for the EPS and for patient 2, a non-contact mapping system was used. Conclusions: Our XMR registration technique allows the integration of anatomical, electrophysiological, and motion information for patients undergoing EPS/RFA. This integrated approach has assisted in interventional guidance and has been used to validate electromechanical models of the myocardium.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by