Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Image classification with quantum pre-training and auto-encoders
  • Publication Type:
  • Authors:
    Piat S, Usher N, Severini S, Herbster M, Mansi T, Mountney P
  • Publisher:
    World Scientific Pub Co Pte Lt
  • Publication date:
  • Pagination:
  • Published proceedings:
    International Journal of Quantum Information
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
  • Language:
Computer vision has a wide range of applications from medical image analysis to robotics. Over the past few years, the field has been transformed by machine learning and stands to benefit from potential advances in quantum computing. The main challenge for processing images on current and near-term quantum devices is the size of the data such devices can process. Images can be large, multidimensional and have multiple color channels. Current machine learning approaches to computer vision that exploit quantum resources require a significant amount of manual pre-processing of the images in order to be able to fit them onto the device. This paper proposes a framework to address the problem of processing large scale data on small quantum devices. This framework does not require any dataset-specific processing or information and works on large, grayscale and RGB images. Furthermore, it is capable of scaling to larger quantum hardware architectures as they become available. In the proposed approach, a classical autoencoder is trained to compress the image data to a size that can be loaded onto a quantum device. Then, a Restricted Boltzmann Machine (RBM) is trained on the D-Wave device using the compressed data, and the weights from the RBM are then used to initialize a neural network for image classification. Results are demonstrated on two MNIST datasets and two medical imaging datasets.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by