UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Automatic sensor orientation using horizontal and vertical line feature constraints
Abstract
© 2019 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) To improve the accuracy of sensor orientation using calibrated aerial images, this paper proposes an automatic sensor orientation method utilizing horizontal and vertical constraints on human-engineered structures, addressing the limitations faced with sub-optimal number of Ground Control Points (GCPs) within a scene. Related state-of-the-art methods rely on structured building edges, and necessitate manual identification of end points. Our method makes use of line-segments but eliminates the need for these matched end points, thus eliminating the need for inefficient manual intervention. To achieve this, a 3D line in object space is represented by the intersection of two planes going through two camera centers. The normal vector of each plane can be written as a function of a pair of azimuth and elevations angles. The normal vector of the 3D line can be expressed by the cross product of these two plane's normal vectors. Then, we create observation functions of horizontal and vertical line constraints based on the zero-vector cross-product and the dot-product of the normal vector of the 3D lines. The observation functions of the horizontal and vertical lines are then introduced into a hybrid Bundle Adjustment (BA) method as constraints, including observed image points as well as observed line segment projections. Finally, to assess the feasibility and effectiveness of the proposed method, simulated and real data are tested. The results demonstrate that, in cases with only 3 GCPs, the accuracy of the proposed method utilizing line features extracted automatically, is increased by 50%, compared to a BA using only point constraints.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by