Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An experimental investigation of the relative strength of the silica polymorphs quartz, coesite and stishovite
In this study, quartz, coesite and stishovite were deformed concurrently with an olivine reference sample at high pressure and 850±50°C. Olivine deformed with an effective stress exponent (n) of 6.0_{+3.1}^{-2.2}, which we interpret to indicate that the Peierls creep deformation mechanism was active in the olivine. Quartz and coesite had very similar strengths and deformed by a mechanism with n = 2.8_{+1.2}^{-0.9} and 2.9_{+1.3}^{-0.9} respectively, which are consistent with previous measurements of power‐law creep in these phases. Stishovite deformed with n = 8.1_{+3.7}^{-2.7} and was stronger than both olivine and the other silica polymorphs. The high stress exponent of stishovite is greater than that typically observed for power‐law creep, indicating it is probably (but not certainly) deforming by Peierls creep. The rheology of SiO₂ minerals appears therefore to be strongly affected by the change in silicon‐coordination and density from 4‐fold in quartz and coesite to 6‐fold in stishovite. If the effect of Si‐coordination can be generalised, the increase in Si‐coordination (and density) associated with bridgmanite formation may explain the 10‐100 fold viscosity increase around 660km depth in the Earth.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by