Please report any queries concerning the funding data grouped in the
sections named
"Externally Awarded"
or
"Internally Disbursed"
(shown on the profile page) to your Research Finance Administrator.
Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php
by entering your department
Please report any queries concerning the student data shown on the
profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A linear inverse method to reconstruct paleo-topography
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Fox M
-
Publication date:15/07/2019
-
Pagination:151, 164
-
Journal:Geomorphology
-
Volume:337
-
Status:Published
-
Print ISSN:0169-555X
-
Full Text URL:
Abstract
© 2019 Landscape evolution provides insight into the tectonic and erosional processes that have shaped the topography observed today. However, in many cases, an estimate of an earlier topography is required to make first-order interpretations about volumes of sediment eroded or depths of fluvial incision, or to serve as an initial condition in landscape evolution models. This paper presents a means to reconstruct paleo-topography in two dimensions in areas that have experienced an increase in incision using available topographic remnants, or areas of low erosion rate. The approach is based on an analytical solution to the steady state stream power model in which a single elevation within the drainage network is a function of the integrated channel steepness and the normalized landscape response time, or χ, values. The branching structure of a drainage network provides redundant information that can be exploited to infer spatial variations in channel steepness and a base level parameter. A single elevation pixel can be written as a sum of channel steepness multiplied by Δχ values, and a set of elevation pixels can be combined as a system of equations. In order to improve efficiency, channel steepness is parameterized using pixels of constant values. By incorporating smoothness constraints on the channel steepness pixels using a Laplacian operator, a stable solution to the inverse problem can be obtained to infer the channel steepness values in space, a base level parameter and, in turn, paleo-topography. This approach is explored with examples from the Inyo Mountain Range, USA, Grand Canyon, USA and the Karrat Region in Western Greenland.
› More
search options
UCL Researchers