UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Finding driver mutations in cancer: Elucidating the role of background mutational processes.
Abstract
Identifying driver mutations in cancer is notoriously difficult. To date, recurrence of a mutation in patients remains one of the most reliable markers of mutation driver status. However, some mutations are more likely to occur than others due to differences in background mutation rates arising from various forms of infidelity of DNA replication and repair machinery, endogenous, and exogenous mutagens. We calculated nucleotide and codon mutability to study the contribution of background processes in shaping the observed mutational spectrum in cancer. We developed and tested probabilistic pan-cancer and cancer-specific models that adjust the number of mutation recurrences in patients by background mutability in order to find mutations which may be under selection in cancer. We showed that mutations with higher mutability values had higher observed recurrence frequency, especially in tumor suppressor genes. This trend was prominent for nonsense and silent mutations or mutations with neutral functional impact. In oncogenes, however, highly recurring mutations were characterized by relatively low mutability, resulting in an inversed U-shaped trend. Mutations not yet observed in any tumor had relatively low mutability values, indicating that background mutability might limit mutation occurrence. We compiled a dataset of missense mutations from 58 genes with experimentally validated functional and transforming impacts from various studies. We found that mutability of driver mutations was lower than that of passengers and consequently adjusting mutation recurrence frequency by mutability significantly improved ranking of mutations and driver mutation prediction. Even though no training on existing data was involved, our approach performed similarly or better to the state-of-the-art methods.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Department of Neuromuscular Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by