Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Wall-less vascular poly(vinyl) alcohol gel ultrasound imaging phantoms using 3D printed vessels
  • Publication Type:
  • Authors:
    Mackle EC, Maneas E, Little C, Carr E, Xia W, Nikitichev D, Rakhit RD, Finlay MC, Desjardins AE
  • Publication date:
  • Published proceedings:
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE
  • Volume:
  • ISBN-13:
  • Status:
  • Print ISSN:
© 2019 SPIE. Vascular phantoms are crucial tools for clinical training and for calibration and validation of medical imaging systems. With current methods, it can be challenging to replicate anatomically-realistic vasculature. Here, we present a novel method that enables the fabrication of complex vascular phantoms. Poly(vinyl alcohol) (PVA) in two forms was used to create wall-less vessels and the surrounding tissue mimicking material (TMM). For the latter, PVA cryogel (PVA-c) was used as the TMM, which was made from a solution of PVA (10% by weight), distilled water, and glass spheres for ultrasonic scattering (0.5% by weight). PVA-c is not water soluble, and after a freeze-Thaw cycle it is mechanically robust. To form the wall-less vessels, vessel structures were 3D printed in water-soluble PVA and submerged in the aqueous solution of PVA-c. Once the PVA-c had solidified, the 3D printed PVA vessel structures were dissolved in water. Three phantoms were created, as initial demonstrations of the capabilities of this method: A straight vessel, a stenosed (narrowed), and a bifurcated (branched) vessel. Ultrasound images of the phantoms had realistic appearances. We conclude that this method is promising for creating wall-less, anatomically realistic, vascular phantoms.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Dept of Med Phys & Biomedical Eng
Dept of Med Phys & Biomedical Eng
Dept of Med Phys & Biomedical Eng
Engineering Science Faculty Office
Dept of Med Phys & Biomedical Eng
Institute of Cardiovascular Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by