UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
3D printed kidney phantoms for an LED-based photoacoustic and ultrasound imaging system
  • Publication Type:
    Conference
  • Authors:
    Nikitichev DI, Murawski K, Harris G, Perkins G, Mosse S, Maneas E, Xia W, Arumuham V, Singh MKA, Choong S, Desjardins A, Hebden J
  • Publisher:
    SPIE
  • Publication date:
    27/02/2019
  • Published proceedings:
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE
  • Volume:
    10878
  • ISBN-13:
    9781510623989
  • Status:
    Published
  • Name of conference:
    SPIE BiOS, 2019
  • Conference place:
    San Francisco, California, United States
  • Conference start date:
    02/02/2019
  • Conference finish date:
    07/02/2019
  • Print ISSN:
    1605-7422
Abstract
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. Photoacoustic imaging is a powerful and increasingly popular technique for tissue diagnostics. Suitable tissue- equivalent phantoms are in high demand for validating photoacoustic imaging methods and for clinical training. In this work, we describe a method of directly 3D printing a photoacoustic tissue-equivalent phantom of a kidney based on Gel Wax, which is a mix of polymer and mineral oil. A kidney phantom that is compatible with photoacoustic scanning will enable clinicians to evaluate a portable LED-based photoacoustic and ultrasound imaging system as a means of locating tumors and other abnormalities. This represents a significant step towards clinical translation of the compact system. Training using realistic phantoms reduces the risks associated with clinical procedures. Complications during procedures can arise due to the specific structure of the kidney under investigation. Thus the ability to create a 3D printed phantom based on detailed anatomical images of a specific patient enables clinicians to train on a phantom with exactly the same structure as the kidney to be treated. Recently we developed a novel 3D printer based on gel wax. The device combines native gel wax with glass microspheres and titanium dioxide (TiO 2 ) particles to obtain a medium with tissue-like optical and acoustic properties. 3D models created using this printer can be given a range of values of optical absorption reduced scattering coefficients. The ability to 3D patient-specific phantoms at low cost has the potential to revolutionize the production and use of tissue-equivalent phantoms in future, and can be applied to a wide range of organs and imaging modalities.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by