Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Single-cell phenotyping and RNA sequencing reveal novel patterns of gene expression heterogeneity and regulation during growth and stress adaptation in a unicellular eukaryote
  • Publication Type:
    Working discussion paper
  • Authors:
    Saint M, Bertaux F, Tang W, Sun X-M, Game L, Köferle A, Bähler J, Shahrezaei V, Marguerat S
  • Publication date:
  • Status:
Cell-to-cell variability is central for microbial populations and contributes to cell function, stress adaptation and drug resistance. Gene-expression heterogeneity underpins this variability, but has been challenging to study genome-wide. Here, we report an integrated approach for imaging of individual fission yeast cells followed by single-cell RNA sequencing (scRNA-seq) and novel Bayesian normalisation. We analyse >2000 single cells and >700 matching RNA controls in various environmental conditions and identify sets of highly variable genes. Combining scRNA-seq with cell-size measurements provides unique insights into genes regulated during cell growth and division in single cells, including genes whose expression does not scale with cell size. We further analyse the heterogeneity and dynamics of gene expression during adaptive and acute responses to changing environments. Entry into stationary phase is preceded by a gradual, synchronised adaptation in gene regulation, followed by highly variable gene expression when growth decreases. Conversely, a sudden and acute heat-shock leads to a stronger and coordinated response and adaptation across cells. This analysis reveals that the extent and dynamics of global gene-expression heterogeneity is regulated in response to different physiological conditions within populations of a unicellular eukaryote. In summary, this works illustrates the potential of combined transcriptomics and imaging analysis in single cells to provide comprehensive and unbiased mechanistic understanding of cell-to-cell variability in microbial communities.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by