UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Functional and Regulatory Profiling of Energy Metabolism in Fission Yeast
Abstract
Background:  The control of energy metabolism is fundamental for cell growth and function, and anomalies are implicated in complex diseases and ageing. It is important for cells to carefully tune metabolic pathways to optimize their function in response to different nutrient or physiological conditions. Metabolism in yeast cells can be easily manipulated by supplying different carbon sources: on glucose yeast rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. Results:  We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. The growth medium and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in key energy metabolism pathways were coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that the acetyl-CoA synthase, rather than the citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. Conclusions:  These systematic and targeted analyses provide a rich framework of the genetic and regulatory basis of fundamental metabolic states to guide future studies on energy metabolism in fission yeast and beyond. Our study pinpoints weaknesses of commonly used auxotroph mutants for investigating energy metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by