Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to
your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Email: portico-services@ucl.ac.uk
Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Deep Learning Based Robotic Tool Detection and Articulation Estimation with Spatio-Temporal Layers
-
Publication Type:Journal article
-
Publication Sub Type:Article
-
Authors:Colleoni E, Moccia S, Du X, De Momi E, Stoyanov D
-
Publication date:07/2019
-
Pagination:2714, 2721
-
Journal:IEEE Robotics and Automation Letters
-
Volume:4
-
Issue:3
-
Status:Accepted
Abstract
© 2019 IEEE. Surgical-tool joint detection from laparoscopic images is an important but challenging task in computer-assisted minimally invasive surgery. Illumination levels, variations in background and the different number of tools in the field of view, all pose difficulties to algorithm and model training. Yet, such challenges could be potentially tackled by exploiting the temporal information in laparoscopic videos to avoid per frame handling of the problem. In this letter, we propose a novel encoder-decoder architecture for surgical instrument joint detection and localization that uses three-dimensional convolutional layers to exploit spatio-temporal features from laparoscopic videos. When tested on benchmark and custom-built datasets, a median Dice similarity coefficient of 85.1% with an interquartile range of 4.6% highlights performance better than the state of the art based on single-frame processing. Alongside novelty of the network architecture, the idea for inclusion of temporal information appears to be particularly useful when processing images with unseen backgrounds during the training phase, which indicates that spatio-temporal features for joint detection help to generalize the solution.
› More search options
UCL Researchers